
University of Washington, Tacoma

Weighted Voronoi Stippling
Methods and Applications in Computational Geometry

Franco R. C. Carlos - UW Tacoma, Mathematics 2023
Supervision: Dr. Ruth Vanderpool

Abstract

Stippling is an artistic technique in which images are illustrated and shaded
using only points. No lines are used. The goal of this paper is to understand the
requisite mathematics in computer generated stipple art, in an example using
Lloyd’s Algorithm. In order to understand Lloyd’s Algorithm, its component
concepts are explained, which include Voronoi Diagrams, density, and centroids.
After understanding the process, the mathematical concepts are demonstrated
in a computer program implemented in Javascript.

1

Contents

1 Introduction - Stipple Art 3

2 Voronoi Diagrams 4

3 Density 8

4 Weighted Centroids 10

5 Lloyd’s Relaxation 12

6 Conclusion and Further Work 16

2

1 Introduction - Stipple Art

Stippling is an artistic technique in which images are illustrated and shaded
using only points. No lines are used. As parts of the image get darker, more
dots are necessary, and conversely lighter areas of the image have less dots. We
will summarize and explain the challenges facing an artist stippling by hand,
and contrast how this may be done algorithmically with a computer.

Figure 1: Our reference image.

Stippling by hand is very much a subjective practice. Parts of an image
can only be lighter or darker in relation to other parts, so properly discerning
between these regions is an astute, learned ability. Furthermore, stippling is
usually done with respect to a reference image, and is a very unintuitive process
when started from scratch. Without being able to outline or roughly sketch
an image, each point must be placed deliberately, keeping in mind how it will
appear in relation to the others, and with the final product always in mind.

There are many ways a computer’s approach to stippling contrasts signif-
icantly to the artist’s. One such process to computer generate stipple art is
known as Lloyd’s Relaxation, also known as Lloyd’s Algorithm. As opposed
to a creative approach, it is a methodical process, necessitating an algorithm.
Points are not placed, through pen on a paper, but are generated randomly, in a
scattered existence. As opposed to being drawn into their final position, points
must be moved to it. As an instruction set, this movement must be defined as

Figure 2: Hand drawn stippling.
Figure 3: Computer generated stip-
pling.

3

a set of rules, uniform for every point and every step in the process. Prior to
movement, the dots need the relative spatial understanding of the dots around
it. Finally, some aspect of the image must be quantified for the dots to have a
reference for their movement. Lloyd’s Relaxation is the process that allows the
points to move in an incremental and uniform manner, converging to a picture.

Before fully understanding Lloyd’s Relaxation, several underlying concepts
must be first visited. Voronoi diagrams introduced in section 2 will first allow
us to establish the spatial relations between our points. Once these relations
have been defined, the concept of visual weight and density from section 3 can
be integrated into our plane, as expressed by the regional color intensity of our
image. When regions made by Voronoi diagrams have varying levels of color
intensity, the weighted centroid, or center of color per region, may be calculated
from section 4. Each point will move towards its own calculated centroid. The
points will “move” according to the rules of Lloyd’s Relaxation, in section 5.

2 Voronoi Diagrams

The first important distinction between stippling by hand and stippling with
Lloyd’s Algorithm is the initial placement of the stipple points. For an artist,
each dot is placed onto the paper by hand, one at a time. Conversely, for a
computer, all points begin already on the plane, and must be rearranged.

In order for the points to be arranged, there must be some form of reference
information such that the computer has an understanding of the relative location
of each point. This may determine the extent of each points’ movement in a
given iteration. Voronoi diagrams allow for such a spatial understanding.

Let {pi} be points on a plane, say we wanted to partition the plane into
regions closest to pi. This can be done through a Voronoi diagram.

Definition 1. A Voronoi Diagram for a set of points P partitions a plane
such that the ith region is defined as all points in the plane closest to pi ∈ P .
For each pi, there exists exactly one Voronoi region. [1]

Definition 2. A Voronoi Polygon encloses its point pi and is defined with
intersecting half planes. The half planes for pi are generated by the perpendicular
bisectors to pipj where pj is a point from P that is the closest to pi. [1]

Definition 3. Voronoi Polygons intersect at Voronoi Vertices, whose sides
are known as Voronoi Edges. [1]

Method to Generating a Voronoi Diagram

1. We begin with the arbitrary points on our plane.

2. For a single point p0, identify each of its nearest neighbors pi. Extend a
line ki to each nearest neighbor.

4

3. Identify the midpoints mi of each ki. Extend new lines li perpendicular
to each ki.

In doing so, we begin to outline the half planes that form the Voronoi
polygons. We will be able to prove that these perpendicular bisector lines
become the half planes of our Voronoi polygon, done Theorem 1.1.

4. Any line li stops wherever it intersects with another line lj .

When these half-plane intersections meet, they enclose a boundary region
that separates the plane into the space closer to p0, and the space closer
to some other point not p0.

Voronoi Diagrams of Two or Three Points

We may begin by examining two simple cases, assessing sets of only two or
three points initially. This allows the steps of Voronoi diagram generation to be
better understood.

In essence, the generation of a Voronoi diagram involves extending a line
through the perpendicular bisector between two points. With just two points,
a complete Voronoi Diagram needs only a single line. We can prove that the
space within Voronoi polygons is closest to the point enclosed by that Voronoi
polygon.

Theorem 2.1. A Voronoi diagram for two points p1 and p2 includes only their
perpendicular bisector. Any point p not on the Voronoi edge and in the p1 half
plane of this diagram is closer to p1. [2]

Proof. We begin by establishing our points p1 and p2, and extending a line l on
their perpendicular bisector. We identify the midpoint between p1 and p2 as m.
Suppose q is an arbitrary point on the plane. We identify the line perpendicular
to ←−→p1p2 passing through an arbitrary point q as k. Let b be the intersection of
←−→p1p2 and k as seen on Figure 4.

Without loss of generality let q exist on the p1 half-plane. There are two
cases to assess: If b lies on p1p2, or if b does not lie on p1p2.

In the first case, when b lies on p1p2, we may identify two right triangles:
△(p1qb) and △(p2qb). These two right triangles share the side qb, as illustrated
in Figure 4 on the left. We may say that p1m = p1b + bm, p2b = p2m+mb and
p1m = p2m. From this, we know that the line segment p1b is shorter than p2b.

The Pythagorean Theorem tells us that in a right triangle, the squared length
of a hypotenuse is equal to the sum of the squares of its shorter sides. If these
two triangles share the side qb, and the side p1b of triangle △(p1qb) is shorter
than the side p2b of triangle △(p2qb), then the hypotenuse of △(p1qb) is shorter
than the hypotenuse of △(p2qb). Since the hypotenuse is the distance between
the given points, p1 is closer to q than p2.

In the second case, the logic remains the same but differs in applying the
Pythagorean Theorem. Recall that b does not lie on p1p2, but remains on the p1
half plane. We can say that bp2 = bp1 + p1p2. From this, we know that the line

5

Figure 4: Voronoi diagram generation, for case 1 (left) and case 2 (right).

segment p1b is shorter than p2b. If these two triangles share the side qb, and the
side p1b of triangle△(p1qb) is shorter than the side p2b of triangle△(p2qb), then
the hypotenuse of △(p1qb) is shorter than the hypotenuse of △(p2qb). Since the
hypotenuse is the distance between the given points, p1 is closer to q than p2.

This proof demonstrates a two point Voronoi diagram’s construction. As
there are only two points, there is only one Voronoi edge, no Voronoi vertices,
and as such no Voronoi polygons. With the introduction of a third point, we
introduce the Voronoi polygon, and the diagram begins to take shape.

Theorem 2.2. The perpendicular bisectors of three noncollinear points intersect
at a singular point z. This point z is the circumcenter of the three points, and
forms a Voronoi vertex. [2]

Proof. We begin by considering three noncollinear arbitrary points, p1, p2, and
p3. The perpendicular bisector between p1 and p2 is defined as the first Voronoi
edge v1. The perpendicular bisector between p2 and p3 is defined as the second
Voronoi edge v2. The perpendicular bisector between p1 and p3 is defined as
the third Voronoi edge v3.

We must demonstrate that the three perpendicular bisectors must intersect
at a singular point. By definition, any point on a perpendicular bisector is
equidistant from the two points it bisects. Also by definition, two lines should
only intersect at a single point. Say that only two Voronoi edges, v1 and v2,
intersect. This means that v1 is equidistant to p1 and p2, and at the same time
v2 is equidistant from p2 and p3. Say that v3 does not intersect v1 and v2. This
must mean that v3 was not equidistant from p1 and p3. Either p1 or p3 therefore
must move to fulfill the definition of a bisector for v3. But we have reached a
contradiction, as p1 and p2 were established as already equidistant from each

6

Figure 5: Theorem 1.2

other. If either moves, then the previous assumptions establishing v1 and v2
would be false. Therefore, v1, v2, and v3 must intersect at a singular point.

Between three points, As v1, v2, and v3 intersect at a singular point, known
the Voronoi vertex i, this point is equidistant from p1, p2, and p3 simultaneously,
and reveals the circumcenter of this Voronoi polygon.

When a Voronoi Diagram is drawn for three points, they have three Voronoi
edges, and therefore a singular Voronoi vertex. This also demonstrates that we
may compute the circumcenter for a given Voronoi polygon.

Corollary 2.2.1. Three noncollinear Voronoi points containing a Voronoi ver-
tex v, form a circle containing no Voronoi points. [2]

Proof. We begin by considering three noncollinear points, p1, p2, and p3, and
a circle C that passes through them. We will demonstrate that no point is
inside the circle C. The proof for Theorem 1.2 demonstrated to us that the
circumcenter of these three points, and therefore the circle, is at the Voronoi
edge, which we can generate. We will then introduce a fourth noncollinear point
to reach a contradiction. Suppose there was a point p4 inside the circle. If p4
was inside the circle, then it would be closer to v than any of the three points.
By definition, the vertex v should be closest to and equidistant from each point
generating its circle C. Thus, if v4 was inside C, it would violate the definition
of a Voronoi vertex. As such, there cannot exist any points inside a circle C
made by points surrounding a Voronoi vertex v.

Looking at the simple cases of two and three points delineates the importance
of Voronoi diagrams: They partition the plane into polygons that show which
point each area of the plane is closest to. With more than just three points,
these perpendicular bisectors can intersect others at more than one location. If

7

a region can be completely enclosed within Voronoi edges, it creates a Voronoi
polygon, enclosing a Voronoi region.

Diagrams of Many Points

Figure 6: An example of a Voronoi Diagram for 10 points.

Moving on from cases of two or three points to many points, the process
would remain the same. For each of a point’s nearest neighbor, identify the
perpendicular bisectors. Extend them, until they intersect with another per-
pendicular bisector.

The focal property of Voronoi Diagrams is how the plane is partitioned
into regions closest to the point it encloses. Having taken the time to prove
this property, we can then understand how it plays a vital role in stipple art.
Voronoi polygons impose limits on the extent of movement for each point within
a given iteration. To determine the direction of this movement, we transition
to understanding visual density within computer images.

3 Density

In stippling, in order to contrast the lighter and darker areas of an image,
an artist would have more dots present in darker areas of the image. In other
words, the dots should be more dense.

An example of shading in stippling can be seen in Figure 7. In depicting the
sphere in Figure 7, the reader’s eye can deduce that the light source is placed
above the object. Additionally, the denser dots below the sphere add shadow
and provide additional depth.

Somehow, this visual property must be captured in a computer image’s data.
For the stippling algorithm we will be using, an image’s RGBA data is used.

8

Figure 7: Shading as applied in stippling.

RGBA stands for Red, Green, Blue, and Opacity (A). The RGBA value is just
one form of capturing image color data in computer graphics. There are four
values captured, representing Red, Blue, Green, and Opaque channels. Each
color channel ranges in value from 0, with no value of that color, to 255, with
full value of that color. Opaqueness differs in ranging from the value 0, being
fully transparent, to 1, being fully opaque.

Each pixel in a computer image has unique RGBA values. We can therefore
consider a computer image a plane of pixels of varying RGBA values. Each pixel
has reference information for the color intensity of the image at its location.
Some areas of an image are more red, for example. This qualitative property
of an image is quantifiably captured by identifying the regions of pixels where
greater values of red are clustered. This would follow for how blue or green
areas of an image is, or even how opaqe an area is to begin with.

This proposes that there are non-uniform regions of color intensity for im-
ages. If we attribute color intensity to the weight (or mass) of an image, then
there should be a center of mass for the image. This center of mass, or centroid,
can be for any color or the opacity itself. In the next section, we will go over
how to calculate the centroid in a general context. Later, this will be used to
calculate the centroids of color intensity of an image, which is the foundation
for Lloyd’s Relaxation.

9

4 Weighted Centroids

The final step in understanding Lloyd’s Relaxation is to understand how our
computer will use the RGBA values. The idea is to compute the coordinates
for the RGBA centroid of each Voronoi Polygon. Each Voronoi Polygon, after
all, is imposed onto our computer-generated stipple art canvas. The computed
centroid of each Voronoi Polygon is the location that each point must move to
in a given Lloyd’s Relaxation iteration. We will go over how the centroid itself
is computed for each Voronoi Polygon.

Consider an image’s pixels as squares, forming a plane on a grid. Each side
of the square is of length 1.

Figure 8: Visual demonstration of the center of a single pixel (square).

The center of a single pixel is the point at which the diagonals of the square
intersect one another. As demonstrated by Figure 8, for a single pixel, the
coordinate of the center would simply be (0.5, 0.5).

If we wanted to calculate the center for a collection of pixels, this would
involve the summation of centers from each individual pixel. The coordinates
of the center (x, y) for a composite shape may be expressed as

x =

∑n
i=0 xi

n+ 1
, y =

∑n
i=0 yi

n+ 1

where n is the number of squares in the shape, and (xi, yi) is the coordinate
value of each center for every square in the shape. We index the set beginning
at the first element i = 0 to match the same notation used by our computer
program. [3]

In other words, if we were to have a shape consisting of several pixels of
uniform density, the coordinates for the center of the shape would be the average
locations of each component square’s centers.

Consider an example where we must determine the center for a shape com-
prised of several pixels, such as the letter L in Figure 9:

Figure 9 is made up of several squares: S1, S2, S3, and S4. From Figure
8, we know that the center of S1 is (0.5, 0.5). This logic should follow for the
remaining squares, readjusted for their position in space. Therefore, S1 has a
center of (0.5, 0.5), S2 has a center of (0.5, 1.5), S3 has a center of (0.5, 2.5), and
S4 has a center of (1.5, 0.5).

10

Figure 9: A composite shape of several squares.

According to our formula for the composite center, we may compute that
for this shape it is as follows:

x =
(.5 + .5 + .5 + 1.5)

(1 + 1 + 1 + 1)
=

3

4
, y =

(.5 + 1.5 + 2.5 + .5)

(1 + 1 + 1 + 1)
=

5

4

The center for this composite shape therefore is located at (34 ,
5
4), located at c1

in Figure 9.
This computes the center of a shape given a uniform density. We can then

work towards implementing the density of our pixels. Upon applying an indi-
vidual value of mass to each square, such as a color value, the computation of
the center becomes the computation for the center of mass, otherwise known
as the centroid. With uniform weight, each square was assumed to have an
equal weight of 1. This can be expressed in the equation for our center, now a
centroid, by multiplying each coordinate value by its weight of 1. First we can
modify our equation for the centroid may be rewritten to reflect this:

x =
((1 ∗ .5) + (1 ∗ .5) + (1 ∗ .5) + (1 ∗ 1.5))

(1 + 1 + 1 + 1)
=

3

4

y =
((1 ∗ .5) + (1 ∗ 1.5) + (1 ∗ 2.5) + (1 ∗ .5))

(1 + 1 + 1 + 1)
=

5

4

Doing so incorporates the fact that each square is of mass 1 into our com-
putation. What happens when this mass is no longer assumed to be 1 for each
square? We now implement a non-uniform density to our shape. Let S4 have
twice as much mass S1 and S2, and S3 have three times as much mass as S1 and
S2. In computing the weighted average of coordinate centers, the value of each

11

component center from each square must affect its overall centroid twice and
three times as much, respectively. Our equation for the new, weighted centroid
may be rewritten to reflect this:

x =
((1 ∗ .5) + (1 ∗ .5) + (3 ∗ .5) + (2 ∗ 1.5))

(1 + 1 + 3 + 2)
=

5.5

7
,

and

y =
((1 ∗ .5) + (1 ∗ 1.5) + (3 ∗ 2.5) + (2 ∗ .5))

(1 + 1 + 3 + 2)
=

10.5

7
.

As opposed to multiplying each center by a value of mass 1, we now multiply
them by their respective values of mass. Understandably, the centroid would
shift both upwards and towards the right, located at c2 in Figure 9.

This concept of calculating centroids will be applied to our Voronoi polygons.
The computed centroid within a given Voronoi Polygon is the location for each
points’ movement for a given iteration of Lloyd’s Algorithm. [4]

5 Lloyd’s Relaxation

Having taken the time to understand all the requisite steps of Lloyd’s Algo-
rithm, we may now put them all together and understand how each step informs
the process. Going over an example of algorithm implementation will allow us
visualize each step. Beginning with Voronoi Diagrams, we have partitioned the
plane into regions closest to each point. These regions determine the maximum
extent of a point’s movement within a given iteration. Using an image’s RGBA
data, we may extrapolate a visual density and compute a center of mass, or
centroid, for which the point to move to for each step. First we review all the
steps so we can see the algorithm all at once. Following this we will go into each
step in detail with an example.

1. We begin with the arbitrary points on our plane.

2. Construct the Voronoi diagram for the points on our plane.

3. Determine the weighted centroid for each Voronoi polygon.

4. Move each point fully towards its centroid.

5. Repeat from step 2.

6. The Algorithm concludes when the initial position is equal to the calcu-
lated centroid. In other words, the points are “relaxed”.

12

Figure 10: A Voronoi Diagram of many points randomly scattered, which serve
as the beginning canvas for Lloyd’s Algorithm stipple art.

There are many readily available and open source choices for software for
Lloyd’s Relaxation. Figure 10 is a screenshot of an open-source computer pro-
gram known as StippleGen2. StippleGen2 is a useful asset in pedagogy as the
Voronoi Diagrams can be visualized as the process is being iterated. In the
screenshot, Lloyd’s Algorithm has already begun its iteration. In Step 2, we
start by generating a Voronoi Diagram for our plane because it dictates the
maximum extent of movement for each point. Voronoi Polygons record how the
points are initially spatially distributed for each iteration. For our algorithm,
the extent of movement for each point should remain within its respective poly-
gon. We can see the points from previous centroids in grey, and the calculated
centroid for the current step in black.

13

Figure 11: The canvas of Figure 10 having been loaded with the image of the
goldfish after 19 iterations. The initial position for each point is in grey, where
the calculated centroid for the next step is in black.

Figure 11 demonstrates Lloyd’s Relaxation applied to the image of the gold-
fish. Step 1 of the algorithm, shown in Figure 10, are in a position that now
roughly begins to resemble the goldfish. Using the R value from each pixel
in our image quantifies a visual aspect of image data. The centroid for each
Voronoi Polygon is the location at which the color intensity is greatest in that
region. Where there are greater concentrations of a given color or opacity, it
should follow that a stipple point is best placed at the greatest concentration of
color intensity.

This computes where the points’ movement should occur. Simply put, the
computer’s method of stippling an image is just moving the stipple points to-
wards the areas of the image with the greatest visual density. This is best done
through computing the center of mass, as we have demonstrated for centroids.
Since the Voronoi Diagrams delineated regions of the canvas closest to each
point, the centroid of a Voronoi polygon is the point at which its color intensity
is the greatest. Repeated calculation of the location of greatest color intensity
continually brings each point to its best approximation for stipple art.

14

Figure 12: 34 iterations after Figure 10, demonstrating a much clearer art ren-
dition.

Figure 12 shows Lloyd’s Relaxation after 34 iterations, where each point is
now also the calculated centroid, completing the algorithm. The likeness of the
goldfish from Figure 10 is much clearer. Adding more points would further help
define the image. This is where Lloyd’s Algorithm has finished, as there is no
more movement to be made. Thus completes the stipple art, having “relaxed”
the points to their computed final locations.

15

6 Conclusion and Further Work

Lloyd’s Algorithm is one example to computer generate stipple art. The
algorithm does so by iteratively rearranging randomly scattered points in order
to represent an underlying image. The algorithm begins by generating a Voronoi
Diagram for all points on the canvas. This delineates the proximity between
points through Voronoi Polygons and establishes a spatial relationship with
respect to the underlying image canvas. The computer then draws the image’s
RGBA data from each pixel. The RGBA data for an image provides information
about the color intensity for each pixel, and subsequently the density of color
throughout the image. The visual center of mass for each Voronoi Polygon is the
location for which the points in the stipple art will move towards. This iterative
process is Lloyd’s Algorithm. The algorithm is finished when the Voronoi point
is in the same position as the centroid for its Voronoi Polygon.

In assessing opportunities for future work, there are two directions, com-
putational and mathematical, that can drive further understanding. Further
work through computer science drives understanding more options for imple-
mentation. This may involve live integration as a website element, or the abil-
ity to adjust settings in real time to visually observe changes made. Further
mathematical work seeks to understand alternative algorithms for computer-
based stipple art generation. For example, other computer generated stipple
art methods use the Delaunay Triangulation as opposed to Voronoi Diagrams.
The Delaunay Triangulation is the straight-line dual of the Voronoi Diagram.

16

References

[1] F. P. Preparata and M. I. Shamos, Computational Geometry: The Locus
Approach to Proximity Problems: The Voronoi Diagram. Springer-Verlag,
1985, p. 204–211.

[2] S. S. Snibe, “Introduction to voronoi diagrams - lecture,” March 1993.

[3] R. Larson and B. Edwards, Calculus: Early Transcendental Functions,
6th ed. Cengage Learning, 2014, p. 486–487.

[4] P. Rosin and J. Collomosse, Image and Video-Based Artistic Stylisation.
Springer London Heidelberg New York Dordrecht, 2013, pp. 45–53.

17

	Introduction - Stipple Art
	Voronoi Diagrams
	Density
	Weighted Centroids
	Lloyd's Relaxation
	Conclusion and Further Work

